
 جر نشل

ارتباط تطبها و صفرهاى تابع شبّبه و بـاسخ نركاتسى

ملاريك
ملاردو در نصل r| با استفاده از تبديل لابِاس تعهبم براى حالت كلى

$$
s C, \frac{1}{s L} \cdot \frac{1}{R} \text { ادميتانس نقتة تمريك }
$$

$$
H(s)=\frac{I_{\mathrm{r}}}{E_{*}}=\frac{1}{L_{1} L_{\mathrm{r}} C s^{\top}+R L_{1} C s^{\gamma}+\left(L_{1}+L_{\uparrow}\right) s+R}
$$

$$
\begin{aligned}
& \left(L_{1} s+\frac{1}{C s}\right) I_{1}-\frac{1}{C s} I_{\gamma}=E_{0} \\
& -\frac{1}{C s} I_{1}+\left(\frac{1}{C s}+L_{\gamma} s+R\right) I_{\tau}=。 \\
& I_{\mathrm{r}}=\frac{\frac{E_{\mathrm{o}}}{C s}}{\left|\begin{array}{cc}
L_{1} s+\frac{1}{C s} & -\frac{1}{C s} \\
-\frac{1}{C s} & \frac{1}{C s}+L_{\mathrm{r}} s \div R
\end{array}\right|}=\frac{E_{0}}{L_{1} L_{\mathrm{r}} C s^{r}+R L_{1} C s^{r} \div\left(L_{1}+L_{\mathrm{r}}\right) s+R}
\end{aligned}
$$

نشرده خشطى تغييرنايدا ير با زمان صحيح است. در حالت كلى:

$$
H(s)=\frac{P(s)}{Q(s)}=\frac{b \cdot s^{m}+b_{1} \cdot s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{1} \cdot s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

 بكى تابع شبكه به وسيلة m صفر (m بَ

 اكير

$$
\text { . } Q\left(\bar{p}_{1}\right)=0 \text { نطب خراهد بود، يعنى }
$$

ا اكر

$$
\text { . } P \text {. }
$$

$$
\begin{aligned}
& \overline{F(s)}=F(\bar{s}) \quad \quad \quad \text { براى تمام }
\end{aligned}
$$

$H(s)=K \frac{(s-2)}{(s+3)\left[(s+1)^{\wedge 2}+4\right]} \quad$ با داتستن اينكه

$$
\begin{equation*}
H(j \omega)=|H(j \omega)| e^{j \& H(j \omega)} \tag{1-r}
\end{equation*}
$$

كه در آنجا | ا

 فركانسى گغته مى شود. دراين بخشى، ما ارتباط ميان قطبها، صغرها و پاسخ فركانسى را بروسى خواهيم كرد.

مثال مدار RLC موازى تطبيت شده كه توسط بك منتع جريان تحريك مىشود

$V(s)=\frac{1}{C s+G+\frac{1}{L s}^{I(s)}}$
$H(s)=\frac{1}{C} \frac{s}{s^{\tau}+\frac{G}{C} s+\frac{1}{2 C}}$
 تابع شبكه يك صغر در $s=0$ و يك جغت تطب مزدوج مختلط در

$$
|H(j \omega)|=\frac{1}{C} \frac{|j \omega-\cdot|}{\left|j \omega-\left(-\alpha+j \omega_{d}\right)\right|\left|j \omega-\left(-\alpha-j \omega_{d}\right)\right|}
$$

$$
\Varangle H(j \omega)=\Varangle(j \omega-\odot)-\Varangle\left[j \omega-\left(-\alpha+j \omega_{d}\right)\right]-\Varangle\left[j \omega-\left(-\alpha-j \omega_{d}\right)\right]
$$

براى درى ارتباط بين مكان صفر-قطب ها با منحتى هاى اندازه و فاز، لازم اسـت به دركى عميق ترى از اين مغاهيم برسيم.

 سريعاً تغيير نمايد؛ (Y) در حوالى صغرى كه در نزديكى محور

 جحرن تطبها و صفرها را بِ اندازه و فاز تاتع شبكه ارنباط مىدهثد.
در بخشَ بعد خواهمبم ديد كه رفتار باستخ ضربئ شبكه با محل تطبها و صفرهاى تابع شبكه ارتباط نزدبكى دارد.
كرده و آنها را بـ رفتار باسخ ضربه ارتباط دهيم.
بررسى نوق را با الين يادآورى شروع میكتيم كه معكوس تبديل لابِاس تابع شَبكه، همان باّسخ

$$
\text { er } e^{-1}[H(s)]=h(t) \quad \text { ضوئ متناظر اسست، يتنى: }
$$

بررسى ارتباط ميان محلههاى تط.بها و صفرها و باستخ ضربه

$$
H(s)=\frac{1}{C} \frac{s}{s^{\top}+\left(\frac{G}{C}\right) s+\frac{1}{L C}}=\frac{1}{C} \frac{s}{s^{\top}+\gamma \alpha s+\omega_{0}^{\top}}
$$

$$
\text { :Q> } 0
$$

$$
h(t)=\frac{1}{C} u(t) e^{-\alpha t} \cos \left(\omega_{d} t+\phi\right)
$$

$$
\text { هر حی تطب به محور } j \omega \text { تزديكتر باشد، سرعت ميرإيى كمتر خو اهد بود و اكر تطب روى }
$$

(pure LC)
 (r) عرض تطب يصنى (

6-6
98-2
ر. بيات
: صen

$\mathrm{Q}=5$

$$
\begin{aligned}
& \text { W = } \text { W }_{\text {d }}
\end{aligned}
$$

 *

$$
H(s)=\frac{V_{L}(s)}{I(s)}=\frac{\mathrm{E}\left[v_{L}(t)\right]}{\mathcal{E}[i(t)]}
$$

(i- الف (

$$
H(s)=\frac{P(s)}{Q(s)}=K \frac{\prod_{i=1}^{m}\left(s-z_{i}\right)}{\prod_{j=1}^{n}\left(s-p_{j}\right)}
$$

(با-1-ب)

natural

frequencies

poles

Le.hs $1-\varepsilon$

$$
\begin{aligned}
& v_{L}(t)=\mathrm{e}^{-1}[H(s)] \\
& v_{L}(t)=\sum_{i=1}^{n} K_{i} e^{p j^{2}}
\end{aligned}
$$

 بالسخ (

 نشان می دهد و جحون •
 [0 [
竍

 میآَوبم:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{d i_{1}}{d t} \\
\frac{d v_{\gamma}}{d t}
\end{array}\right]=\left[\begin{array}{ll}
-r & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
v_{r}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] i_{s}} \\
& \text { باكر نظر گرفتن تبديل لاپِاس اين هعادله، ختواهيم داشت: } \\
& {\left[\begin{array}{cc}
s+\gamma & -1 \\
1 & s
\end{array}\right]\left[\begin{array}{l}
I_{1}(s) \\
V_{\mathrm{Y}}(s)
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] I_{s}(s)+\left[\begin{array}{l}
i_{1}\left(\circ^{-}\right) \\
v_{\mathrm{Y}}\left(0^{-}\right)
\end{array}\right]} \\
& \text {(} F-F \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. (1) (1) }
\end{aligned}
$$

در معادل؛ ((t-t)، بد دست میآكربيم:

ر. بيات
$E_{1}(s)=(s+1) I_{1}(s)-i_{1}\left(i_{1}\right)$ (اكتون

$$
E_{1}(s)=\frac{-i_{1}(\cdot)+v_{r}\left(v_{0}\right)}{s+1} \quad: \quad \text { s }
$$

بنابراين، ا- فركانس طبيعى , e مى ماباشد.
 Z
 هالت صـر را يـشَ بينى ميكند.

$$
\begin{aligned}
& V_{\mathrm{T}}(s)=\frac{-i_{1}\left(0^{-}\right)+(s+\mathrm{Y}) v_{\mathrm{r}}\left(0^{-}\right)}{(s+1)^{r_{2}}} \\
& \left.i_{1}(t)=\left[-i_{1}(\cdot)+v_{\mathrm{r}}(\cdot)\right)\right] e^{-t}+i_{1}(\cdot) \cdot e^{-t} \\
& v_{\mathrm{r}}(t)=\left[-i,\left(0^{-}\right)+v_{\mathrm{r}}(\cdot)\right] t e^{-t}+v_{\mathrm{F}}\left(\theta^{-}\right) e^{-t}
\end{aligned}
$$

 بیتحريكا نشان داده شده در شكل (Y-r الف) اعمأل كنيم، امهلدانس نقطة تحريكى Z كه به وسيلئ منع

$$
Z(s)=\frac{V(s)}{I_{s}(s)}=\frac{\mathcal{E}[v(t)]}{\mathscr{E}[i .(t)]}
$$

تطبهاى Z(s) فركانسهاى طبيعى متغير v مى اشند و از اينرو فركانسهاى طبيبى شبكه نيز هستند.

 نمىدهد و بنابراين تغييرى در رقتار طبيعى شبكه بهارجود نمیآَورد.

$Y(s)=\frac{I(s)}{V_{0}(s)}=\frac{\mathrm{E}[i(t)]}{\mathbb{C}\left[v_{0}(t)\right]}$

 ورودى بريله شده اعمال مىكنيم و بدين طريت، رفتار طبيتى شبكئ بيتحريكى را حفظ بیكتيم.

نشان دادمايدم كه دستئ فركانسهاى طبيعى يكى شبكه، تمام تطبهاى اعِدانسها و ادميتانسهاى

40, $0.51-2$

 $v_{r}{ }^{\text {r }}$

فيلتر بإين گڭذر

$$
H(s)=\frac{V_{Y}}{I}=\frac{K}{s^{n}+a_{1} r^{n-1}+\cdots+a_{n}} \quad \text { تمرين بـ طور حسى نشان دهمبـ }
$$

میتوان ثابت كرد كد اكر

-

$$
\begin{aligned}
& H(s)=\frac{b \cdot s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{\cdot} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } \\
& \text { كي در آن ضرايب. . } \\
& H(j \omega)=\frac{\left(b_{m}-b_{m-r} \omega^{\top}+b_{m-\gamma} \omega^{\top}+\cdots\right)+j \omega\left(b_{m-1}-b_{m-r} \omega^{\top}+\cdots\right)}{\left(a_{n}-a_{n-\gamma} \omega^{\top}+a_{n-\gamma} \omega^{\dagger}+\cdots\right)+j \omega\left(a_{n-1}-a_{n-r} \omega^{\top}+\cdots\right)} \quad \text { 准 } \\
& \text { ملاحطة اينكه } H(j \omega) \text { به صورت زنر است، حائز الهميت میباشد: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\overline{H(j \omega})=H(-j \omega) & \operatorname{Re}[\overline{H(j \omega)}]=\operatorname{Re}[H(j \omega)] & |\overline{H(j \omega)}|=|H(j \omega)| \\
& \operatorname{Im}[\overline{H(j \omega)}]=-\operatorname{Im}[H(j \omega)] & \Varangle \overline{H(j \omega)}=-\Varangle H(j \omega)
\end{array}
\end{aligned}
$$

> . برای $\nless H(j \omega),|H(j \omega)| \leq \operatorname{Im}[H(j \omega)], \operatorname{Re}[H(j \omega)]$
> كمرين خوراص تقارن داده شده تو سطل معادلة (9-9) را از روى رإبطة $H(s)=\int_{0}^{\infty} h(t) e^{-s t} d t$ بـه دست آوريل.

